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There is an approach due to Bazhanov and Reshetikhin for solving integrable
RSOS models which consists of solving the functional relations which result
from the truncation of the fusion hierarchy. We demonstrate that this is also an
effective means of solving integrable vertex models. Indeed, we use this method
to recover the known Bethe Ansatz solutions of both the closed and open XXZ
quantum spin chains with U(1) symmetry. Moreover, since this method does
not rely on the existence of a pseudovacuum state, we also use this method to
solve a special case of the open XXZ chain with nondiagonal boundary terms.
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1. INTRODUCTION

There are several well-known methods of deriving the Bethe Ansatz (BA)
solution of integrable vertex models: the coordinate BA, (1–3) the T − Q
approach, (2) the algebraic BA, (4–6) the analytic BA, (7) and the functional
BA. (8) We present here yet another method, which entails solving the
functional relations which result from the truncation of a model’s fusion
hierarchy. This approach was (to our knowledge) first developed for RSOS
models (9) by Bazhanov and Reshetikhin in ref. 10, but until now has not
been applied to vertex-type models. An important feature of this method is
that, unlike some of the other approaches, it does not rely on the existence
of a pseudovacuum (reference) state.



Our primary motivation for this work comes from the long outstand-
ing problem of solving the open spin- 1

2 XXZ quantum spin chain with
nondiagonal boundary terms, defined by the Hamiltonian (11)

H=
1
2
3 C

N − 1

n=1
(sx

n sx
n+1+sy

n sy
n+1+cosh gsz

nsz
n+1)

+sinh g 1coth t− sz
1+

2o−

sinh t−
sx

1 − coth t+sz
N −

2o+

sinh t+
sx

N
24 , (1.1)

where sx, sy, sz are the standard Pauli matrices, g is the bulk anisotropy
parameter, t±, o± are arbitrary boundary parameters, and N is the number
of spins. This model is integrable. Indeed, the Hamiltonian is obtained
from the commuting transfer matrix (6) constructed with the nondiagonal K
matrix found in refs. 11 and 12 together with the standard XXZ R matrix.

Solving this problem (e.g., determining the energy eigenvalues in terms
of roots of a system of Bethe Ansatz equations) is a crucial step in for-
mulating the thermodynamics of the spin chain and of the boundary sine-
Gordon model. (12) Moreover, this problem has important applications in
condensed matter physics and statistical mechanics.

A fundamental difficulty is that, in contrast to the special case of diago-
nal boundary terms (i.e., o±=0, in which case H has a U(1) symmetry) con-
sidered in refs. 3 and 6, a simple pseudovacuum state does not exist (e.g., the
state with all spins up is not an eigenstate of the Hamiltonian).

Some progress on this problem was made recently in refs. 13 and 14.
Namely, for bulk anisotropy value g= ip

p+1 , p=1, 2,..., (and hence q — eg is
a root of unity, satisfying qp+1=−1), an exact (p+1)-order functional
relation for the fundamental transfer matrix was proposed. The key obser-
vation is that the fused spin- p+1

2 transfer matrix can be expressed in terms
of a lower-spin transfer matrix, resulting in the truncation of the fusion
hierarchy.2 The simplest case p=1, which corresponds to the XX chain, is

2 This is distinct from the observation due to Belavin et al. (15, 16) that, for the special case of
quantum-group symmetry (i.e., o±=0, t± Q .), the fused transfer matrix t (

p
2)(u) vanishes

after quantum group reduction.

analyzed in ref. 13.
Although sets of equations for the eigenvalues of the transfer matrix

were found in ref. 14, these equations do not have the standard Bethe
Ansatz form, and they become increasingly complicated as the value of p
increases. Moreover, one would like to solve the model for general values
of g, i.e., not just for the discrete values corresponding to roots of unity.

We also achieve here some progress on these questions. In particular,
from the functional relations in ref. 14, we obtain standard Bethe Ansatz
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equations for the transfer matrix eigenvalues for general values of g, albeit
only for the special case

o+=o− — o ] 0, t+=t− — t, N=odd. (1.2)

Unfortunately, we have not yet succeeded to obtain corresponding results
for general values of the boundary parameters.

The outline of this article is as follows. In Section 2, we consider as a
warm-up the case of the closed XXZ chain, and provide a new derivation
of the well-known Bethe Ansatz solution. In Section 3, we turn to the open
XXZ chain. Using the functional relations proposed in ref. 14, we first
recover the solution of Alcaraz et al. (3) and Sklyanin (6) for the diagonal case
o±=0, and we then give the solution for the nondiagonal case (1.2). We
conclude with a brief discussion of our results in Section 4.

2. THE CLOSED CHAIN

The closed (i.e., with periodic boundary conditions) spin- 1
2 XXZ

quantum spin chain is defined by the Hamiltonian

H=
1
2

C
N

n=1
(sx

n sx
n+1+sy

n sy
n+1+cosh gsz

nsz
n+1), (2.1)

where sFN+1=sF1. As noted in the Introduction, there are various methods
of deriving the Bethe Ansatz solution of this model. As a warm-up for the
open-chain problem, we now give another derivation of this solution, which
involves solving the model’s functional relations. In Section 2.1 we derive
the functional relations, and then in Section 2.2 we proceed to solve them.

2.1. Functional Relations

In this subsection, we begin by briefly reviewing the construction of
the (fused) transfer matrices of the closed XXZ chain. We then recall the so-
called fusion hierarchy which these transfer matrices obey. Finally, we give
an identity which truncates the fusion hierarchy and leads to the desired
functional relations.

The fundamental spin-( 1
2 , 1

2) XXZ R matrix is given by the 4 × 4 matrix

R(u)=R sinh(u+g) 0 0 0
0 sinh u sinh g 0
0 sinh g sinh u 0
0 0 0 sinh(u+g)

S , (2.2)
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where g is the anisotropy parameter. It is a solution of the Yang–Baxter
equation

R12(u − v) R13(u) R23(v)=R23(v) R13(u) R12(u − v). (2.3)

(See, e.g., refs. 17 and 18.) The fused spin-(j, 1
2) R matrix (j=1

2 , 1, 3
2 ,...) is

given by (17, 19)

RO1 · · · 2jP 2j+1(u)

=P+
1 · · · 2jR1, 2j+1(u) R2, 2j+1(u+g) · · · R2j, 2j+1(u+(2j − 1) g) P+

1 · · · 2j.
(2.4)

The (undeformed) projectors are defined by

P ±
1 · · · m=

1
m!

C
s

(± 1)s Ps, (2.5)

where the sum is over all permutations s=(s1,..., sm) of (1,..., m), and Ps

is the permutation operator in the space êm
k=1 C

2. For instance,

P+
12=1

2 (I+P12),

P+
123=1

6 (I+P23P12+P12P23+P12+P23+P13),
(2.6)

where I is the identity matrix.
The closed-chain transfer matrix t (j)(u), which is constructed using a

spin-j auxiliary space, is defined by

t (j)(u)=tr1 · · · 2j TO1 · · · 2jP(u), (2.7)

where the fused monodromy matrix is defined by

TO1 · · · 2jP(u)=RO1 · · · 2jP N(u) · · · RO1 · · · 2jP 1(u), (2.8)

and N corresponds to the number of spins of the chain. One can show that

TO1 · · · 2jP(u)=P+
1 · · · 2jT1(u) T2(u+g) · · · T2j(u+(2j − 1) g) P+

1 · · · 2j. (2.9)

These transfer matrices constitute commutative families

[t (j)(u), t (k)(v)]=0. (2.10)
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The fundamental transfer matrix t(u) — t ( 1
2
)(u) contains the Hamiltonian

(2.1),

H 3
“

“u
log t(u):

u=0
+const., (2.11)

and has the periodicity property

t(u+ip)=(−1)N t(u). (2.12)

The fusion hierarchy for the XXZ chain is given by (17, 21)

t (j)(u) t ( 1
2
)(u+2jg)=d(u+(2j − 1) g) t (j − 1

2
)(u)+t(j+1

2
)(u), j=1

2 , 1, 3
2 ,...,
(2.13)

where t (0)(u)=I, and the quantum determinant (17, 20) d(u) is given by

d(u)=tr12P−
12T1(u) T2(u+g)=( − z(u+g))N, (2.14)

where

z(u)=−sinh(u+g) sinh(u − g). (2.15)

The key fact in deriving the functional relations is that for anisotropy
values

g=
ip

p+1
, p=1, 2,..., (2.16)

the fused transfer matrices satisfy the identity

t ( p+1
2

)(u)=(−1)N d(u − g)[t ( p − 1
2

)(u+g)+(1+(−1)N) n(u)N F], (2.17)

where

n(u)=−
1

z(u)
D

p

k=0
sinh(u+kg)=−

1
z(u)

1 i
2
2p

sinh((p+1) u), (2.18)

and

F= D
N

k=1
sz

k. (2.19)
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The remarkable result (2.17), to which we refer as the ‘‘truncation identity,’’
follows directly from Eq. (4.13) in ref. 14, which relies on the quantum-
group construction (22) of higher-spin R matrices.

The fact that the spin- p+1
2 transfer matrix can be expressed in terms of

a lower-spin transfer matrix leads to the truncation of the fusion hierarchy,
which in turn leads to a (p+1)-order functional relation for the funda-
mental transfer matrix. For instance, for the case p=2, Eqs. (2.13) and
(2.17) lead to the third-order functional relation

t(u) t(u+g) t(u+2g) − d(u) t(u+2g) − d(u+g) t(u)

− (−1)N d(u − g) t(u+g) − (1+(−1)N) d(u − g) n(u)N F=0. (2.20)

Similar higher-order functional relations have been obtained for RSOS
models (2, 23, 10) and for the 8-vertex model. (24) We emphasize that, contrary
to the commonly-held misconception (see, e.g., ref. 25), the fusion
hierarchies of vertex models do truncate, for the g values (2.16).

The commutativity relation (2.10) with j=k=1
2 and the fact

[F, t(u)]=0 imply that t(u) and F can be simultaneously diagonalized,

t(u) |L (± 1)P=L (± 1)(u) |L (± 1)P,

F |L (± 1)P= ± |L (± 1)P,
(2.21)

where the eigenstates |L (± 1)P are independent of u. Acting on these eigen-
states with the functional relations, one obtains the corresponding relations
for the eigenvalues.

2.2. Bethe Ansatz Solution

We now proceed to solve the functional relations for the eigenvalues
of the fundamental transfer matrix. Following ref. 10, we observe that the
functional relations for p \ 2 can be represented in a compact form as the
determinant of a (p+1) × (p+1) matrix:

det R
L (F)

0 − h−1 0 0 ... 0 0 − Fh0

− h1 L (F)
1 − h0 0 ... 0 0 0

0 − h2 L (F)
2 − h1 ... 0 0 0

z

0 0 0 0 ... − hp − 1 L (F)
p − 1 − hp − 2

− Fhp − 1 0 0 0 ... 0 − hp L (F)
p

S=0,

(2.22)
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where

h(u)=sinhN(u+g), (2.23)

hk=h(u+gk), L (F)
k =L (F)(u+gk), and F= ± 1 now denotes the eigenvalue

of the operator in (2.19). Let (Q0, Q1,..., Qp) be the null vector of the
matrix in (2.22); i.e.,

L (F)
0 Q0 − h−1Q1 − Fh0Qp=0,

− hkQk − 1+L (F)
k Qk − hk − 1Qk+1=0, k=1,..., p − 1,

− Fhp − 1Q0 − hpQp − 1+L (F)
p Qp=0.

(2.24)

We make the Ansatz Qk=Q(u+gk), where

Q(u)=D
M

j=1
sinh(u − uj), (2.25)

for some integer M. Equations (2.24) imply (using Qk=(−1)M Qk+p+1)
that the eigenvalues are given by

L (F)(u)=h(u)
Q(u − g)

Q(u)
+h(u − g)

Q(u+g)
Q(u)

, (2.26)

and

F=(−1)M. (2.27)

We verify that the result (2.26) is consistent with the periodicity condition
(2.12). The requirement that L (F)(u) be analytic at u=uj yields the Bethe
Ansatz equations

h(uj)
h(uj − g)

=−
Q(uj+g)
Q(uj − g)

, j=1,..., M. (2.28)

We recognize Eqs. (2.23), (2.25), (2.26), and (2.28) as the familiar
Bethe Ansatz result for the eigenvalues of the transfer matrix of the closed
XXZ chain. Although we have assumed that g has the values (2.16), these
results are known to be true for general values of g. Note also that the
approach that we have followed here does not explicitly rely on the exis-
tence of a pseudovacuum state.
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A more thorough analysis would also include the diagonalization of
Sz=1

2 ;N
k=1 sz

k along with t(u) and F. By considering the asymptotic
behavior of t(u) for u Q ., one can establish that the value of M is related
to the Sz eigenvalue, namely, M=N

2 − Sz. Since these matters are already
well-understood, and since the open-chain problem (1.1) lacks this addi-
tional U(1) symmetry, we do not pursue this issue further.

Finally, we point out that the result (2.27), which perhaps is less
familiar, can nevertheless be readily obtained within the algebraic Bethe
Ansatz approach. (5) Indeed, as is well known, the eigenstates of the transfer
matrix are given by

|u1,..., uMP=B(u1) · · · B(uM) |WP, (2.29)

where B(u) is a certain creation-like operator, and |WP is the pseudo-
vacuum state with all spins up. It is easy to show that {F, B(u)}=0 and
F |WP=|WP. Hence, the state |u1,..., uMP has the eigenvalue F=(−1)M.

3. THE OPEN CHAIN

We turn now to the open chain (1.1), which is our main concern. Our
strategy is to try to generalize the analysis of the preceding section. Hence,
in Section 3.1 we review the functional relations, and then in Section 3.2 we
attempt to solve them.

3.1. Functional Relations

The fundamental spin- 1
2 XXZ K− matrix is given by the 2 × 2

matrix (11, 12)

K−(u)=R sinh(t− +u) o− sinh 2u
o− sinh 2u sinh(t− − u)

S , (3.1)

which evidently depends on two boundary parameters t− , o− . It is a solu-
tion of the boundary Yang–Baxter equation (26)

R12(u − v) K−
1 (u) R21(u+v) K−

2 (v)=K−
2 (v) R12(u+v) K−

1 (u) R21(u − v).
(3.2)

The fundamental open-chain transfer matrix t(u) is constructed,
following Sklyanin’s recipe, (6) from the matrix R(u) (2.2), the matrix K−(u)
(3.1), and the matrix K+(u) which is equal to K−(−u − g) with (t− , o− )
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replaced by (t+, o+).3 The Hamiltonian (1.1) is related to the first deriva-

3 Further details about the construction of this transfer matrix can be found in ref. 14.

tive of the transfer matrix,

H=
1

4 sinh t− sinh t+ sinh2N − 1 g cosh g

“t(u)
“u

:
u=0

−
sinh2 g+N cosh2 g

2 cosh g
I.

(3.3)

The transfer matrix has the periodicity property

t(u+ip)=t(u), (3.4)

as well as crossing symmetry

t(−u − g)=t(u), (3.5)

and the asymptotic behavior (for o± ] 0)

t(u) ’ − o− o+
eu(2N+4)+g(N+2)

22N+1 I+ · · · for u Q .. (3.6)

Functional relations for the open XXZ chain (1.1) have been proposed
in ref. 14. These relations, which follow from the fusion hierarchy (27, 28)

together with the truncation identity for the g values (2.16), are given by

L(u) L(u+g) · · · L(u+pg)

− d(u − g) L(u+g) L(u+2g) · · · L(u+(p − 1) g)

− d(u) L(u+2g) L(u+3g) · · · L(u+pg)

− d(u+g) L(u) L(u+3g) L(u+4g) · · · L(u+pg)

− d(u+2g) L(u) L(u+g) L(u+4g) · · · L(u+pg) − · · ·

− d(u+(p − 1) g) L(u) L(u+g) · · · L(u+(p − 2) g)+ · · ·

=f(u), (3.7)

where L(u) is the eigenvalue of the fundamental open-chain transfer matrix
t(u). Furthermore, the function d(u) is now defined by

d(u)=
D(u)

z(2u+2g)
, (3.8)
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where the quantum determinant D(u) is given by

D(u)= − [sinh(u+g+t− ) sinh(u+g − t− )+o2
− sinh2(2u+2g)]

× [sinh(u+g+t+) sinh(u+g − t+)+o2
+ sinh2(2u+2g)]

× sinh 2u sinh(2u+4g) z(u+g)2N, (3.9)

and z(u) is defined in Eq. (2.15). Moreover, the function f(u) is given by4

4 In terms of the three functions f0, f1, f3 used in ref. 14, the functions d(u) and f(u) are
given by

d(u)=
f1(u+g)

f0(u)
, f(u)=

f3(u)
f0(u)

.

f(u)=
(−1)p(N+1)

22p(N+1) sinh2N((p+1) u)
cosh2((p+1) u+ip

2 E)
cosh2((p+1) u)

× {n(u; t− , o− ) n(u; − t+, o+)+n(u; − t− , o− ) n(u; t+, o+)

+2(−1)N (−o− o+)p+1 sinh2(2(p+1) u)}, (3.10)

where E=2frac(p/2) equals 0 if p is even, and equals 1 if p is odd; and the
function n(u; t, o) is defined by

n(u; t, o)=sinh((p+1)(t+u))+ C
5 p+1

2
6

l=1
cp, lo

2l sinh((p+1) u+(p+1 − 2l) t),
(3.11)

with

cp, l=
(p+1)

l!
D
l − 2

k=0
(p − l − k).

For instance, for the case p=3, the functional relation is given by5

5 The last two terms of the left-hand-side were accidentally omitted in Eq. (5.2) of ref. 14.

L(u) L(u+g) L(u+2g) L(u+3g) − d(u − g) L(u+g) L(u+2g)

− d(u) L(u+2g) L(u+3g) − d(u+g) L(u) L(u+3g)

− d(u+2g) L(u) L(u+g)+d(u) d(u+2g)+d(u − g) d(u+g)=f(u).
(3.12)
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3.2. Bethe Ansatz Solution

For general values of the boundary parameters o±, t±, we have not yet
succeeded to find a determinant representation analogous to (2.22) of the
functional relations (3.7). Nevertheless, for the following two special cases
of the boundary parameters, we have found such representations.

3.2.1. The Diagonal Case o±=0

The Bethe Ansatz solution for the diagonal case o±=0 is already
known. (3, 6) Nevertheless, it is instructive to see how this solution emerges
from the functional relations. Indeed, when o±=0, the functional relations
for p \ 2 can be represented as

det R
L0 − h −

−1 0 0 ... 0 0 − h0

− h1 L1 − h −

0 0 ... 0 0 0
0 − h2 L2 − h −

1 ... 0 0 0
z

0 0 0 0 ... − hp − 1 Lp − 1 − h −

p − 2

− h −

p − 1 0 0 0 ... 0 − hp Lp

S=0,

(3.13)

where

h(u)= − sinh2N(u+g)
sinh(2u+2g)
sinh(2u+g)

sinh(u+t− ) sinh(u − t+), (3.14)

hŒ(u)=h(−u − 2g), (3.15)

and hk=h(u+gk), h −

k=hŒ(u+gk), Lk=L(u+gk). We let (Q0, Q1,..., Qp)
be the null vector of the matrix in (3.13); i.e.,

L0Q0 − h −

−1Q1 − h0Qp=0,

− hkQk − 1+LkQk − h −

k − 1Qk+1=0, k=1,..., p − 1,

− h −

p − 1Q0 − hpQp − 1+LpQp=0.

(3.16)

We make the Ansatz Qk=Q(u+gk), where

Q(u)=D
M

j=1
sinh(u − uj) sinh(u+uj+g), (3.17)
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which has the crossing symmetry Q(u)=Q(−u − g). Equations (3.16) and
(3.15) imply that the eigenvalues are given by

L(u)=h(u)
Q(u − g)

Q(u)
+h(−u − g)

Q(u+g)
Q(u)

. (3.18)

We verify that this result is consistent with both the periodicity (3.4) and
crossing (3.5) properties of the transfer matrix. The requirement that L(u)
be analytic at u=uj yields the Bethe Ansatz equations

h(uj)
h(−uj − g)

=−
Q(uj+g)
Q(uj − g)

, j=1,..., M. (3.19)

The results (3.14), (3.17)–(3.19) for the transfer-matrix eigenvalues and
Bethe Ansatz equations agree with those of Alcaraz et al. (3) and Sklyanin. (6)

Although we have assumed that g has the values (2.16), these results are
true for general values of g. As in the case of the closed chain, one can
establish that M=N

2 − Sz by considering the asymptotic behavior of t(u) for
u Q ..

3.2.2. The Nondiagonal Case o+=o− — o, t+=t− — t, N=odd

Finally, we consider the nondiagonal case o+=o− — o ] 0, t+=t− — t,
N=odd. For this case, the functional relations again have the determinant
representation (3.13), with

h(u)=−sinh2N(u+g)
sinh(2u+2g)
sinh(2u+g)

(sinh(u+t) sinh(u − t)+o2 sinh2 2u).
(3.20)

It follows that the transfer-matrix eigenvalues and Bethe Ansatz equations
are again given by (3.17)–(3.19). However, unlike the two cases considered
earlier which have a U(1) symmetry, here the value of M is fixed. Indeed,
the asymptotic behavior (3.6) implies that

M=1
2 (N − 1). (3.21)

We expect that, as in the previous cases, these results hold for general
values of g.

4. DISCUSSION

We have seen that an approach used by Bazhanov and Reshetikhin (10)

to solve RSOS models, which is based on a model’s functional relations, is
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also an effective means of solving vertex models. Indeed, we have used this
method to recover the known Bethe Ansatz solutions of both the closed
and open XXZ chains with U(1) symmetry. Moreover, since this method
does not rely on the existence of a pseudovacuum state, we have also been
able to use this method to solve the special nondiagonal case (1.2) of the
open chain.

Although we have focused here on vertex models associated with sl2,
it is clear that the same approach should be applicable to vertex models
associated with higher-rank algebras.

Having found a model’s functional relations, a crucial step in this
method is to reformulate the functional relations in determinant form. We
have not yet succeeded to carry out this step for general values of the
boundary parameters of the open XXZ chain (1.1). It would clearly be
useful to find necessary and sufficient conditions for the existence of a
determinant representation of the functional relations, as well as a system-
atic procedure for its construction. We hope to be able to report on these
matters in a future publication.
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